
Development of Intelligent Systems and Multi-Agents
Systems with Amine Platform

Adil KABBAJ

INSEA
Rabat, Morocco, B. P 6217

akabbaj@insea.ac.ma

http://sourceforge.net/projects/amine-platform

Abstract. Amine is a Java open source multi-layer platform
dedicated to the development of intelligent systems and multi-agents
systems. This paper and companion papers [2, 3] provide an overview
of Amine platform and illustrate its use in the development of dynamic
programming applications, natural language processing applications,
multi-agents systems and ontology-based applications.

1. Introduction

Amine is a Java open source multi-layer platform and a modular Integrated

Development Environment, dedicated to the development of intelligent systems and
multi-agents systems. Amine is a synthesis of 20 years of works, by the author, on the
development of tools for various aspects of Conceptual Graph theory.

This paper shows how dynamic programming, natural language processing and
multi-agents systems can be developed using Amine. The companion paper [2]
illustrates the use of Amine in the development of ontology based applications. A
forthcoming paper will describe the use of Amine in problem-solving applications;
and especially in the development of a strategic card game called Tijari (which has
some similarity with Bridge card game).

We urge the reader to consult Amine web site1 for more detail. Source code,
samples and documentation can be downloaded from sourceforge site2.

The paper is organized as follows: section 2 introduces briefly Amine platform. A

more detailed description of Amine architecture is provided in the companion paper
[3]. Section 3 introduces the re-engineering, extension and integration of Prolog+CG
language [4, 5] in Amine. Section 4 introduces the re-engineering, extension and
integration of Synergy language [6, 7] in Amine. It shows also how Synergy has been
extended to enable dynamic programming. Section 5 discusses the use of the new
version of Prolog+CG in the development of natural language processing
applications. Section 6 illustrates briefly the use of Amine, in conjunction with Jade3

1 amine-platform.sourceforge.net
2 sourceforge.net/projects/amine-platform
3 jade.tilab.com/

mailto:akabbaj@insea.ac.ma
http://sourceforge.net/projects/amine-platform
http://amine-platform.sourceforge.net/
http://sourceforge.net/projects/amine-platform
http://jade.tilab.com/

2

(Java Agent Development Environment), in the development of a multi-agents system
called Renaldo. A forthcoming paper will describe the development of Renaldo in
more detail.

Section 7 provides a comparison of Amine with other CG tools. Section 8 outlines
some current and future work. Section 9 concludes the paper.

2. An overview of Amine Platform

Amine is a modular integrated environment composed of four hierarchical layers:
a) ontology layer provides “structures, processes and graphical interfaces” to specify
the “conceptual vocabulary” and the semantic of a domain, b) algebraic layer is build
on top of the ontology layer: it provides “structures, operations and graphical
interfaces” to define and use “conceptual” structures and operations, c) programming
layer is build on top of the algebraic layer: it provides “programming
paradigms/languages” to define and execute “conceptual” processes and, d) multi-
agent layer provides plugs-in to agent development tools, allowing for the
development of multi-agent systems.

More specifically:
1. Ontology layer: It concerns the creation, edition and manipulation of multi-lingua

ontology. The companion paper [2] presents this layer in detail (including
ontology meta-model and ontology related processes).

2. Algebraic layer: this layer provides several types of structures and operations:
elementary data types (AmineInteger, AmineDouble, String, Boolean, etc.) and
structured types (AmineSet, AmineList, Term, Concept, Relation and Conceptual
Graph). In addition to operations that are specific to each kind of structure,
Amine provides a set of basic common operations (clear, clone, toString, etc.)
and various common matching-based operations (match, equal, unify, subsume,
maximalJoin and generalize). Structures can be generic; they can contain
variables and the associated operations take into account variable binding (the
association of a value to a variable) and binding context (the programming
context that determines how variable binding should be interpreted and resolved,
i.e. how to associate a value to a variable and how to get the value of a variable).

Amine structures and operations (including CG structure and CG operations)
are APIs that can be used by any Java application. They are also “inherited” by
the higher layers of Amine.

The companion paper [3] provides more detail on the algebraic layer of
Amine. It highlights also the use of Java interfaces to enhance the genericity of
Amine. See also Amine web site for mode detail on this basic feature of Amine.

3. Programming layer: Three complementary programming paradigms are provided
by Amine: a) pattern-matching and rule-based programming paradigm,
embedded in PROLOG+CG language which is an object based and CG-based
extension of PROLOG language, b) activation and propagation-based
programming paradigm, embedded in SYNERGY language, and c) ontology or
memory-based programming paradigm which is concerned by incremental and
automatic integration of knowledge in an ontology (considered as an agent

 3

memory) and by information retrieval, classification and other related
ontology/memory-based processes.

4. Agents and Multi-Agents Systems layer: Amine can be used in conjunction with a
Java Agent Development Environment to develop multi-agents systems. Amine
does not provide the basic level for the development of multi-agents systems (i.e.
implementation of agents and their communication capabilities using network
programming) since this level is already offered by other open source projects
(like Jade). Amine provides rather plugs-in that enable its use with these projects
in order to develop multi-agents systems.

Amine provides also several graphical user interfaces (GUIs): Ontology GUI, CG

Notations editors GUI, CG Operations GUI, Dynamic Ontology GUI, Ontology
processes GUI, Prolog+CG GUI and Synergy GUI. Amine Suite Panel provides an
access to all GUIs of Amine, as well as an access to some ontology examples and to
several tests that illustrate the use of Amine structures and their APIs. Amine has also
a web site, with samples and a growing documentation.

Amine four layers form a hierarchy: each layer is built on top of and use the lower
layers (i.e. the programming layer inherits the ontology and the algebraic layers).
However, a lower layer can be used by itself without the higher layers: the ontology
layer (i.e. with the associated APIs) can be used directly in any Java application
without the other layers. Algebraic layer (i.e. with the associated APIs) can be used
directly too, etc. Among the goals (and constraints) that have influenced the design
and implementation of Amine was the goal to achieve a higher level of modularity
and independence between Amine components/layers.

Amine platform can be used as a modular integrated environment for the

development of intelligent systems. It can be used also as the kernel; the basic
architecture of an intelligent agent: a) the ontology layer can be used to implement the
dynamic memory of the agent (agent’s ontology is just a perspective on the agent’s
memory), b) the algebraic layer, with its various structures and operations, can be
used as the “knowledge representation capability” of the agent, c) the programming
layer (i.e. dynamic ontology engine, Prolog+CG and Synergy) can be used for the
formulation and development of many inference strategies (induction, deduction,
abduction, analogy) and cognitive processes (reasoning, problem solving, planning,
natural language processing, dynamic memory, learning, etc.), d) Synergy language
can be used to implement the reactive and event-driven behaviour of the agent.

One long-term goal of the author is to use Amine, in conjunction with Java Agent
Development Environments (like Jade), to build various kinds of intelligent agents,
with multi-strategy learning, inferences and other cognitive capabilities.

The group of Peter Ohrström and Henrik Scharfe has developed on-line course that

covers some parts of Amine Platform4. Amine is used by the author to teach Artificial
Intelligence (AI) courses. Amine is suited for the development of projects in various

4 www.huminf.aau.dk/cg/

4

domains of AI (i.e. natural language processing, problem solving, planning,
reasoning, case-based systems, learning, multi-agents systems, etc.).

3. Re-engineering, extension and integration of Prolog+CG in Amine

Prolog+CG has been developed by the author as a “stand-alone” programming

language [4, 5]. The group of Peter Ohrström developed a very good on-line course
on some aspects of Prolog+CG. Let us recall three key features of previous versions
of Prolog+CG:
• CG (simple and compound CGs) is a basic and primitive structure in Prolog+CG,

like list and term. And like a term, a CG can be used as a structure and/or as a
representation of a goal. Unification operation of Prolog has been extended to
include CG unification. CG matching-based operations are provided as primitive
operations.

• By a supplementary indexation mechanism of rules, Prolog+CG offers an object
based extension of Prolog.

• Prolog+CG provides an interface with Java: Java objects can be created and
methods can be called from a Prolog+CG program. Also, Prolog+CG can be
activated from Java classes.

The interpreter of Prolog+CG, that takes into account these features (and others)

has been developed and implemented in Java by the author.
The above three key features are still present in the new version of Prolog+CG but

the re-engineering of Prolog+CG, which was necessary for its integration in Amine
platform, involved many changes in the language (and its interpreter). Five main
changes are of interest (see Amine Web Site for more details):
• Type hierarchy and Conceptual Structures (CSs) are no more described in a

Prolog+CG program. Prolog+CG programs are now interpreted according to a
specified ontology that includes type hierarchy and CSs. Also, a Prolog+CG
program has the current ontology as support: Prolog+CG interpreter attempts first
to interpret each identifier in a program according to the current lexicon of the
current ontology. If no such identifier is found, then the identifier is considered as
a simple identifier (without any underlying semantic).

• The notion of project is introduced: user can consult several programs (not only
one) that share the same ontology.

• Prolog+CG inherit the first two layers of Amine: all Amine structures and
operations are also Prolog+CG structures and operations. And of course,
Prolog+CG user can manipulate the current ontology and the associated lexicons
according to their APIs.

• The interface between the new version of Prolog+CG and Java is simpler and
“natural” in comparison with previous interfaces (see Amine Web site for more
detail).

• Interoperability between Amine components: Prolog+CG can be used in
conjunction with the other components of Amine (i.e. dynamic ontology engine
and Synergy can be called/used from a Prolog+CG program).

 5

2. Re-engineering, extension and integration of Synergy in Amine

In [6, 7] we proposed CG activation-based mechanism as a computation model for

executable conceptual graphs. Activation-based computation is an approach used in
visual programming, simulation and system analysis where graphs are used to
describe and simulate sequential and/or parallel tasks of different kinds: functional,
procedural, process, event-driven, logical and object oriented tasks. Activation-based
interpretation of CG is based on concept lifecycle, relation propagation rules and
referent/designator instantiation. A concept has a state (which replaces and extends
the notion of control mark used by Sowa) and the concept lifecycle is defined on the
possible states of a concept. Concept lifecycle is similar to process lifecycle (in
process programming) and to active-object lifecycle (in concurrent object oriented
programming), while relation propagation rules are similar to propagation or firing
rules of procedural graphs, dataflow graphs and Petri Nets.

SYNERGY is a visual multi-paradigm programming language based on CG
activation mechanism. It integrates functional, procedural, process, reactive, object-
oriented and concurrent object-oriented paradigms. The integration of these
paradigms is done using CG as the basis knowledge structure, without actors or other
external notation. Previous versions of Synergy have been presented [6, 7]. The
integration of Synergy in Amine required re-engineering work and some changes and
extensions to the language and to its interpreter. New features of Synergy include:
• Long-term memory introduced in previous definitions of Synergy corresponds

now to ontology that plays the role of a support to a Synergy “expression/
program”,

• Previous versions of Synergy did not have an interface with Java. The new
version of Synergy includes such an interface; Java objects can be created and
methods activated from Synergy. This is an important feature since user is not
restricted to (re)write and to define anything in CGs. Also, primitive operations
are no more restricted to a fixed set of operations.

• The new version of Synergy has an access to the two first layers of Amine. Also,
since Prolog+CG, Synergy and dynamic ontology formation process are
integrated in the same platform and share the same underlying implementation; it
is now possible to develop applications that require all these components. We
provide an example of this synergy in the next section.

• Another new feature is the possibility to perform dynamic programming, i.e.
dynamic formation-and-execution of the program. We focus on this feature in the
rest of this section.

2.1. Dynamic programming with Synergy

To illustrate what we mean by “dynamic programming”, let us start with the idea

of database inference proposed by Sowa [9, p. 312] that combines the user’s query
with background information about the database to compute the answer. Background
information is represented as type definitions and schemata. Sowa stressed the need
for an inference engine to determine what virtual relations to access. By joining
schemata and doing type expansions, the inference engine expands the query graph to
a working graph (WG) that incorporates additional background information. Actors

6

bound to the schemata determine which database relations to access and which
functions and procedures to execute. According to Sowa, his inference engine can
support a dynamic way of deriving dataflow graphs [9, p. 312]. In other words, his
inference engine can be considered as a basis for a dynamic programming approach
(recall that dataflow graphs, Petri Nets, executable CG and other similar notations
have been used to develop visual programming languages). Indeed, his inference
engine is not restricted to database, it can be extended to other domains and be
considered as an approach to dynamic programming.

Our task was to adapt, generalize and integrate the inference engine of Sowa to
Synergy. The new version of Synergy includes the result of this integration. Figure 1
illustrates the implementation of Sowa’s example in Synergy. Background
information (procedural knowledge in terms of strategies, methods, procedures,
functions, tasks, etc.) is stored in ontology as situations associated to concept types
(Figure 1.a). During the interpretation/execution of the working graph (WG) (Figure
1), if a concept needs a value that can not be computed from the actual content of the
WG (Figure 1.b), then Synergy looks, in the ontology, for the best situation that can
compute the value (i.e. the descriptor) of the concept. The situation is then joined to
the WG (Figure 1.c) and Synergy resumes its execution. In this way, the program (i.e.
the WG) is dynamically composed during its execution (Figure 1).

This simple example illustrates the advantage of Amine as an Integrated
Development Environment (IDE); it illustrates how various components of Amine
(ontology, CG operations, Prolog+CG, Synergy) can be easily used in one
application: semantic analysis of the request can be done by a Prolog+CG program.
The result (an executable CG), will be provided to Synergy which illustrates the
visual execution of the “dynamic program”. After the termination of the execution,
the final CG will be an input for a text generation program (that can be implemented
in Prolog+CG) to provide a text that paraphrases the composed “program” responsible
for the result. See Amine Web Site for more detail on dynamic programming with
Synergy.

(a) Snapshot of the ontology (b) The request: initial state of the WG

 7

(c) WG after first maximalJoin (d) WG after second maximalJoin and termination

of execution

Figure 1: Example of Dynamic programming with Synergy (adapted from Sowa
[9])

3. Natural Language Processing with Prolog+CG

As stressed in a previous paper [5], several features of Prolog+CG makes it a

suitable language for the development of natural language processing (NLP)
applications: a) Prolog+CG is an extension of Prolog which is suited for NLP, b) CG,
both simple and compound, is provided as a basic data structure, c) Prolog+CG allows
CG with variables (variable as concept type, concept designator, concept descriptor,
or as relation type), d) several CG matching-based operations are provided
(maximalJoin, generalize, subsume, contract, expand, analogy, etc.), e) CG basic
operations are available (find a concept or a relation in a CG that verify some
constraints, etc.), f) the possibility to construct and update a CG (by adding more
concepts and relations).

All these features (and others) are made simpler with the integration of Prolog+CG
in Amine platform. Note that with the new version of Prolog+CG, there is also the
possibility to use directly the first two layers of Amine. To illustrate the usefulness of
all these features for NLP, let us consider briefly their use in three sub-tasks of NLP:
semantic analysis, question/answering and phrase/text generation.

Semantic analysis with Prolog+CG
In [5], we illustrated how the above features of Prolog+CG can be exploited to

develop a semantic analysis process. As a recall, let us consider the following rule
that shows also the use of new features of Prolog+CG. It illustrates : a) the use of
variables as concept type, concept designator, concept descriptor and relation type, b)
the construction of a concept (E_NP = [N : A1]), c) the construction of a CG (G =
[N : A1]-R1->[T1 = V1]), d) the use of the primitive branchOfCG that locates a
branch B in the CG G so that B unifies with the pattern given as the second argument
of branchOfCG, e) the use of the first two layers of Amine: branch (i.e. a relation with
its source and target concepts) and CG are two structures of Amine, these structures

8

with their methods can be used directly in a Prolog+CG program. In our example, we
have a call to the method getSourceConcept() that returns the source of the
branch/relation and a call to the method specialize() that specializes a CG by the
maximal join of another CG.

stativePart([A|P1], P1, G_NP, E_NP, G) :-
 Adj(A, R1, T1, V1), !,
 E_NP = [N : A1],
 G = [N : A1]-R1->[T1 = V1],
 branchOfCG(B, [N : A1]-R1->[T1 = V1], G),
 E_N is B:getSourceConcept(),
 G:specialize(E_N, G_NP, E_NP).

Let us consider now the change in the formulation of the lexicon: in previous

versions of Prolog+CG, the semantic of the words should be specified in the
Prolog+CG program itself. For instance, consider the word “open” with some of its
different meanings:

lexicon("open",verb,

[Human]<-agnt-[Open]-obj>[OpenableObject]).
lexicon("open", verb, [Key]<-agnt-[Open]-obj->[Door]).
lexicon("open", verb, [Open_Box]<-agnt-[Open]-obj->[Box]).
lexicon("open", verb, [Shop]<-pat-[Open]-
 -obj->[Door],
 -ptime->[Time]).

With the new version of Prolog+CG, another formulation is now possible: the

above different meanings can be considered as background information, stored in the
used ontology as situations associated to the type Open. User can access the ontology
to get background information (definition, canon, situation, etc.) for a specific type or
individual. These changes in the formulation of a lexicon in Prolog+CG lead to the
following reformulation:

lexicon("open", verb, Open). // one entry for the word “open”

lexicon(_verb, verb, _type, _sem) :-
 lexicon(_verb, verb, _type),
 getSemantic(_type, _sem).

Definition of the goal getSemantic/2 is provided below. It searches, from the

ontology, the background information for a specific type or individual. Note the call
to the method getCanon() that returns the canon of the type (or returns null if the type
has no canon) and the call to the method getSituationsDescription() that returns, in a
list, all situations descriptions that are associated to the specified type.

getSemantic(_Type, _Sem) :-
 _Sem is _Type:getCanon(),
 dif(_Sem, null).

getSemantic(_Type, _Sem) :-
 _EnumSitDescr is _Type:getSituationsDescription(),
 dif(_EnumSitDescr, null),
 _ListSitDescr is

 9

 "aminePlatform.util.AmineObjects":
enumeration2AmineList(_EnumSitDescr),

 member(_Sem, _ListSitDescr).

Word disambiguation is performed in the current version of our semantic analysis

process by using the backtracking of Prolog+CG: if the maximal join of the word’s
semantic with the working graph fails, Prolog+CG backtracks and resatisfies the goal
getSemantic/2 which returns another meaning (i.e. another conceptual structure) for
the current word.

Question/Answering
Semantic analysis of a (short) story would produce a compound CG (see the

fragment below). Let us call it CGStory. In our example, CGStory is a fusion of three
networks: a) temporal network composed by "after" relations that specify the
temporal succession of actions, events, and states, b) causal network composed by
"cause" relations, and c) intentional network composed by "motivationOf" and
"reason" relations:

story(
[Action #act1 =

[Time : Early]<-time-[WakeUp]-pat->[Man: John]]-after->
[State #stt1 = [Hungry]-pat->[Man: John]]-after->
 ...
[State #stt1]<-reason-[Goal=

[Action=[Food]<-obj-[Eat]-agnt->[Man:John]]]-
 <-reason-[Action #act2],
 <-reason-[Action #act5],
 <-reason-[Action #act7],
 <-reason-[Action #act8]
[Action #act3]<-motivationOf-[Goal =

[Action = [Man:John]<-dest-[Greet]-agnt->[Woman: Mary]]
]<-reason-[Action #act4]

[Event #evt1]-
 -cause->[State #stt2 = [ParkingLot]<-pat-[Slick]],
 <-cause-[Event #evt2]
).

Semantic analysis process is applied also to questions and for each type of

question; there is a specific strategy responsible for the search and the composition of
the answer [1]. Here is the formulation in Prolog+CG of the strategy for answering
“why” question. It concerns the intentional network: the strategy locates in CGStory
the branch/relation with relation type “reason” or “motivationOf” and the branch’s
source concept should unify with the content of the request. The recursive definition
of the goal reason/2 provides the possibility to follow an “intentional path” to get the
reason of the reason, etc.

answerWhy(A, Y) :-
 story(_story),
 member(R, [reason, motivationOf]),
 branchOfCG(B, [T = G]<-R-[T2 = A], _story),
 reason([T = G], Y).

reason(X, X).

10

reason([T = G], Y) :-
 story(_story),
 member(R, [reason, motivationOf]),
 branchOfCG(B, [T1 = G1]<-R-[T = G], _story),
 reason([T1 = G1], Y).

For instance, to the question "why did john drive to the store ?", the

question/answering program returns:

?- questionAnswering("why did john drive to the store ?",

_answer).
{_answer = [Goal = [Action = [Eat #0] -
 -agnt->[Man :John],
 -obj->[Food]
]
]};
{_answer = [State = [Hungry]-pat->[Man :John]]};
 no
?-

Of course, the above definition of “why-strategy” is simplistic, but the aim of the

example is to show how Prolog+CG, in the context of Amine, constitutes a suitable
programming environment for CG manipulation and for the development of NLP
applications.

Phrase generation
Nogier [8] proposed a phrase generation process that is based on: a) word

selection, b) transformation of the input CG to a “syntactic CG” using
semantic/syntactic corresponding rules, c) and then linearization of the “syntactic
CG” using syntactic and morphological rules. All these rules can be implemented in
Prolog+CG. To produce a concise and precise sentence, the generation process has to
select the most specific words for the concepts in the input CG [8]. The approach
proposed by Nogier can be implemented in Amine as follows: use the dynamic
ontology engine of Amine to classify the input CG according to its concepts. The
result of the classification, for each concept, is a list of “Conceptual Structures (CS)
nodes” in the ontology that are the most close to the input CG. Select from these CS
nodes, those that correspond to type definitions. Compute the correlation coefficient
proposed by Nogier on the selected definitions to get the “best” words for the current
concepts in the input CG. We are developing a phrase generation process that is based
on the work of Nogier [8] and that uses the above implementation for the “word
selection” procedure.

4. Multi-Agents Systems (MAS) with Amine and Jade: The case of Renaldo

Instead of developing a specific multi-agents layer for Amine, we decided to use

available open-source “Java Agent Development Environments” in conjunction with
Amine. In her DESA, Kaoutar ElHari explored the use of Amine and Jade5. Jade
allows the creation of Agents (i.e. it offers a Java class Agent and manages the

5 jade.tilab.com

http://jade.tilab.com/

 11

underlying network processing), the use of different kinds of behaviours and the
communication with ACL according to FIPA specification. Currently, we use Jade to
handle the lower level of the MAS (i.e. creation and communication between agents)
and Amine for the higher level (i.e. cognitive and reactive capabilities of the agents
are implemented using Amine).

Currently, the MAS layer of Amine contains one plug-in (Amine/Jade)
implemented as a package: amineJade. Other plugs-in (i.e. other packages) could be
added as other combinations of Amine and “Java Agent Development Environments”
are considered (for instance Amine and Beegent6). The package “amineJade” offers
basically two classes:
• The class PPCGAgent that extends the class Agent (provided by Jade) with

Prolog+CG interpreter (as its main attribute) and with other attributes and
methods (like send, sendAndWait and satisfyGoal).

• The class JadeMAS that offers the possibility, via the method createMAS, to
create and initiate a multi-agents system.

Let us consider briefly the case of Renaldo; a MAS that concerns the simulation of
a child story. The setting of the story is a forest; it corresponds to the environment of
Renaldo. The characters of the story (the bear John, the bird Arthur, the bee Betty,
etc.) are the agents of Renaldo. Each type of agents (bear, bird, bee, etc.) has a set of
attributes, knowledge, goals, plans and actions that are specified as a Prolog+CG
program. A specific agent can have, in addition, specific attributes, knowledge, goals,
plans and actions, specified also as a Prolog+CG program.

The MAS Renaldo is implemented as a Prolog+CG program/file: “Renaldo.pcg”.
The execution of the MAS Renaldo is initiated by calling the goal “renaldo” which is
defined as follows:

renaldo :-
 "aminePlatform.mas.amineJade.JadeMAS":createAgents(

[John, Arthur, Betty, Environment]),
 John:satisfyGoal(
 goal([Bear: John]<-pat-[SatisfyNeed]-obj->

 [Hungry]-Intensity-> [Intensity = High])).

The argument of the method createAgents() is a list of agents identifiers. From the

identifier of each agent (i.e. John), the method gets the associated Prolog+CG
program/file that specifies the agent (i.e. “John.pcg”). It then locates the header fact of
the agent to get the ontology and names of other Prolog+CG programs associated to
the agent. For instance, the header of the agent John (from the program “John.pcg”)
is:

 header("RenaldoOntology.xml", ["Bear.pcg"]).

The method createAgents() will then create an instance of PPCGAgent class for

each agent and initiates the associated Prolog+CG interpreter with the specified
Prolog+CG files and ontology file. For instance, createAgents() will create an
instance of PPCGAgent class for John and will initiate its Prolog+CG interpreter with
the files “John.pcg” and “Bear.pcg”, and with the ontology “RenaldoOntology.xml”.

6 www2.toshiba.co.jp/beegent/index.htm

http://www2.toshiba.co.jp/beegent/index.htm

12

Note: the environment is implemented as an agent that manages the access, by the
agents, to shared objects (resources like foods, water, river, etc.) and it is responsible
also for the treatment of events.

After the creation and initiation of the agents (due to the execution of the method

createAgents()), “renaldo” assigns to John the goal “satisfy hungry with intensity
high”. The method satisfyGoal() of PPCGAgent calls the Prolog+CG interpreter of
the agent (recall that each agent has its own Prolog+CG interpreter) to resolve the
specified goal.

Renaldo in particular and Amine’s MAS layer in general will be described in more
detail in a forthcoming paper.

5. Related works

Philip Martin7 provides a detailed comparison of several available CG tools8

(Amine, CharGer, CGWorld, CoGITaNT, Corese, CPE, Notio, WebKB). CGWorld is
a Web based workbench for joint distributed development of a large KB of CG, which
resides on a central server. CGWorld is no more developed. Corese is a semantic web
search engine based on CG. WebKB is a KB annotation tool and a large-scale KB
server. CoGITaNT is an IDE for CG applications. CharGer is a CG editor with the
possibility to execute primitive actors and to perform matching operation. Notio is not
a tool but a Java API specification for CG and CG operations. It is no more
developed. It is re-used however by CharGer and Corese. CPE has been developed as
a single standalone application. Currently, CPE is being upgraded to a set of
component modules (to render CPE an IDE for CG applications). Its author
announces that CGIF and basic CG operations (projection and maximal join) are
coming soon. The new upgraded version of CPE is underway and it is not yet
available. CGWorld, Notio and CPE will not be considered in our comparison of
available (and active) CG tools.

In his comparison, Philip focuses mainly on the “ontology-server dimension”
which is specific to his tool (WebKB); he did not consider other dimensions, i.e. other
classes of CG tools. Indeed, CG tools can be classified under at least 8 categories of
tools: CG editors, executable CG tools, algebraic tools (tools that provides CG
operations), KB/ontology tools, ontology server tools, CG-based programming
languages, IDE tools for CG applications and, agents/MAS tools.

The category “IDE for CG applications” means a set of APIs and hopefully of
GUIs that allow user to construct and manipulate CGs and to develop various CG
applications. Only Amine and CoGITaNT belong to this category. The category “CG-
based programming language” concerns any CG tools that provide a programming
language with CG and related operations as basic construct. Only Amine belongs to
this category, with its two programming languages: Prolog+CG and Synergy. The
category “Agents/MAS Architecture” concerns CG tools that allow the construction
and execution of intelligent agents (with cognitive and reactive capabilities) and

7 en.wikipedia.org/wiki/CG_tools
8 These tools are listed also in www.conceptualgraphs.org/

 13

multi-agents systems (MAS). As illustrated in this paper, Amine, in conjunction with
a Java Agent Development Environment, can be classified under this category.

Symbols used in the table:
“++”: the tool offers different features concerning the associated category. For

instance, Amine provides multi-lingua and multi-notations CG editors. The same for
executable CG: it offers not only the equivalent of actors, as CharGer does, but a
programming language based on executable CG. This paper illustrates in addition a
new feature of Synergy: dynamic programming. The same for “KB/Ontology”
category: Amine provides a rich ontology API, ontology editors and various basic
ontology processes. And the same for “Programming” category: Amine provides two
CG based programming languages (i.e. Prolog+CG and Synergy).

“+”: the tool can be classified under the associated category.
“-“: the tool can not be classified under the associated category.
“/”: the tool is not intended to belong to the specified category but it uses some

aspects of the category. For instance, “web ontology tools” like Corese and WebKB
are not intended to be used as “algebraic tools” even if they use some CG operations
(like projection and generalization).

 Amine CharGer CoGITaNT Corese WebKB

CG Editor(s) ++ ++ ++ - -
Exec. CG ++ + - - -

Algebraic ++ + + / /
KB/Ontology ++ - ? + +
Ont. Server - - - - ++

IDE ++ / + - -
Programming ++ - - - -
Multi-Agent + - - - -

Figure 2: Comparison of available CG tools

6. Current and future work

Current and future works concern all layers of Amine as well as the development

of applications in various domains:
a) Development of the ontology layer: development of interfaces with ontologies

that use RDF/OWL, development of Web services so that Amine ontologies can
be used from the Web, development of an ontology server, enhance the current
ontology drawing module, enhance the basic ontology processes, etc.

b) Development of the algebraic layer: enhance the implementation of CG
operations, consider other implementations, enhance the CG drawing module,
etc.

14

c) Development of the programming layer: enhance the debugger of Prolog+CG as
well as its interpreter and its GUI, complete the implementation of all the features
of Synergy, etc.

d) Development of inference and learning strategies, that will be considered as
memory-based strategies to provide an operational memory-based and multi-
strategy learning programming paradigm,

e) Development of several applications in various areas: reasoning, expert systems,
ontology-based applications, natural language processing, problem solving and
planning, case-based systems, multi-strategy learning systems, multi-agents
systems, intelligent tutoring systems, etc.

Conclusion

Amine platform can be used to develop different types of intelligent systems and

multi-agents systems, thanks to its architecture; a hierarchy of four layers (ontology,
algebraic, programming and agents layers) and to the “openness” of Amine to Java.
This paper illustrates the use of Amine in the development of dynamic programming
applications, natural language processing, and in multi-agents systems applications.
The companion paper illustrates the use of Amine in ontology-based applications.

We hope that Amine will federate works and efforts in CG community (and
elsewhere) to develop a robust and mature platform for the development of intelligent
systems (including semantic web) and multi-agents systems.

References

[1] Graesser A. C., S. E. Gordon, L. E. Brainerd, QUEST: A Model of Question

Answering, in Computers Math. Applic. Vol 23, N° 6-9, pp. 733-745, 1992
[2] Kabbaj A., K. Bouzouba, K. ElHachimi and N. Ourdani, Ontologies in Amine

platform: Structures and Processes in Amine, submitted to the 14th ICCS 2006.
[3] Kabbaj A., Amine Architecture, submitted to the Conceptual Structures Tool

Interoperability Workshop, hold in conjunction with the 14th ICCS 2006.
[4] Kabbaj A. and M. Janta, From PROLOG++ to PROLOG+CG: an object-

oriented logic programming, in Proc. Of the 8th ICCS'00, Darmstadt, Allemagne,
Août, 2000.

[5] Kabbaj A. and al., Uses, Improvements and Extensions of Prolog+CG: Case
studies, in Proc. Of the 9th ICCS’01, San Francisco, August, 2001.

[6] Kabbaj A., Synergy: a conceptual graph activation-based language, in Proc. Of
the 7th ICCS'99, 1999.

[7] Kabbaj A., Synergy as an Hybrid Object-Oriented Conceptual Graph
Language, in Proc. Of the 7th ICCS’99, Springer-Verlag, 1999.

[8] Nogier J-F., Génération automatique de langage et graphes conceptuels,
Hermès, Paris, 1991.

[9] Sowa J. F., Conceptual Structures: Information Processing in Man and
Machine, 1984, Addison-Wesley.

